Improving Adaptive Kalman Filter in GPS/SDINS Integration with Neural Network

نویسندگان

  • Jianguo Jack Wang
  • Weidong Ding
  • Jinling Wang
چکیده

Kalman filter (KF) can provide optimal solutions if the system dynamic and measurement models are correctly defined, and the noise statistics for the measurement and system are completely known. The conventional way of determining the covariance matrices of process noise and observation errors relies on analysis of empirical data from each sensor in a system, which is called KF tuning. In practice, however, the process noise and observation errors vary with time and environment, which causes uncertainty in the covariance matrices of process noise and observation errors and results in system performance degradation. Adaptive KF (AKF) has been intensively investigated, which can tune a filter continuously so as to eliminate empirical data analysis and aims to improve filtering performance. The covariance matching technique in AKF uses innovation-based estimation that attempts to make the filter residual covariances consistent with their theoretical covariances estimated with samples. This paper presents a neural network aided AKF based on covariance matching technique, for integrated GPS/INS system. Instead of using a limited window for estimation as conventional AKF, all the previous samples are counted in according to their character using neural network (NN). The covariance matching is conducted then its relation with the corresponding character is mapped with the NN. The adjustment of the AKF is based on both the NN training result and the updated covariance matching result. The purpose of doing so is to eliminate estimation noise, and to keep the selected samples ergodic. The objective of this research is to develop a system that is self-adaptive to the change of operation environment or hardware components, such as the type of INS and system configuration etc. with the help of AKF. The principle of this hybrid method and the NN design are presented. Field test data are processed to evaluate the performance of the proposed method. Different types of INS are tested to demonstrate the effectiveness of the proposed adaptive algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The UKF and CDKF for Low-cost SDINS/GPS In-motion Alignment

In-motion alignment of a SDINS/GPS integrated system, determining the angular relationship between the navigation frame and the body frame is a necessary process. This paper describes the in-motion alignment procedure for a low-cost GPS/INS integrated system using the Unscented Kalman Filter (UKF) and Central Difference Kalman Filter (CDKF). The UKF and CDKF are used to implement the in-motion ...

متن کامل

A New Neural Network-based Algorithm for GPS/INS Integration

Integrated navigation systems have been becoming more and more important in many applications. Particularly, Global Positioning System (GPS) and Inertial Navigation System (INS) integration is being given much attention in the past few years, as it is widely used in several positioning and navigation fields. Both of such two systems have their unique features and shortcomings. Their integration...

متن کامل

Improvement of Navigation Accuracy using Tightly Coupled Kalman Filter

In this paper, a mechanism is designed for integration of inertial navigation system information (INS) and global positioning system information (GPS). In this type of system a series of mathematical and filtering algorithms with Tightly Coupled techniques with several objectives such as application of integrated navigation algorithms, precise calculation of flying object position, speed and at...

متن کامل

Kalman filter and Neural Network methods for detecting irregular variations of TEC around the time of powerful Mexico (Mw=8.2) earthquake of September 08, 2017

In 98 km SW of Tres Picos in Mexico (15.022°N, 93.899°W, 47.40 km depth) a powerful earthquake of Mw=8.2 took place at 04:49:19 UTC (LT=UTC-05:00) on September 8, 2017. In this study, using three standard, classical and intelligent methods including median, Kalman filter, and Neural Network, respectively, the GPS Total Electron Content (TEC) measurements of three months were surveyed to detect ...

متن کامل

A Low Cost Ins/gps Navigation System Integrated with a Multilayer Feed Forward Neural Network

This article investigates the use of a multilayer feedforward artificial neural network into a GPS integrated low cost inertial navigation system based on MEMS sensors. The neural network is applied as an alternative of integration technique, with the purpose of providing better navigation solutions, during the lack of information in GPS outages portions of time. An input-output neural network ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007